Back to Search
Start Over
Circadian rhythm disruption upregulating Per1 in mandibular condylar chondrocytes mediating temporomandibular joint osteoarthritis via GSK3β/β-CATENIN pathway
- Source :
- Journal of Translational Medicine, Vol 22, Iss 1, Pp 1-22 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Background Temporomandibular joint osteoarthritis (TMJOA) has a high incidence rate, but its pathogenesis remains unclear. Circadian rhythm is an important oscillation in the human body and influences various biological activities. However, it is still unclear whether circadian rhythm affects the onset and development of TMJOA. Methods We disrupted the normal rhythm of rats and examined the expression of core clock genes in the mandibular condylar cartilage of the jaw and histological changes in condyles. After isolating rat mandibular condylar chondrocytes, we upregulated or downregulated the clock gene Per1, examined the expression of cartilage matrix-degrading enzymes, tested the activation of the GSK3β/β-CATENIN pathway and verified it using agonists and inhibitors. Finally, after downregulating the expression of Per1 in the mandibular condylar cartilage of rats with jet lag, we examined the expression of cartilage matrix-degrading enzymes and histological changes in condyles. Results Jet lag led to TMJOA-like lesions in the rat mandibular condyles, and the expression of the clock gene Per1 and cartilage matrix-degrading enzymes increased in the condylar cartilage of rats. When Per1 was downregulated or upregulated in mandibular condylar chondrocytes, the GSK3β/β-CATENIN pathway was inhibited or activated, and the expression of cartilage matrix-degrading enzymes decreased or increased, which can be rescued by activator and inhibitor of the GSK3β/β-CATENIN pathway. Moreover, after down-regulation of Per1 in mandibular condylar cartilage in vivo, significant alleviation of cartilage degradation, cartilage loss, subchondral bone loss induced by jet lag, and inhibition of the GSK3β/β-CATENIN signaling pathway were observed. Circadian rhythm disruption can lead to TMJOA. The clock gene Per1 can promote the occurrence of TMJOA by activating the GSK3β/β-CATENIN pathway and promoting the expression of cartilage matrix-degrading enzymes. The clock gene Per1 is a target for the prevention and treatment of TMJOA.
Details
- Language :
- English
- ISSN :
- 14795876
- Volume :
- 22
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Translational Medicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.846f6d9c1cf34e2ea8fd3bcc514db8bf
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12967-024-05475-2