Back to Search Start Over

Depdc5 knockout rat: A novel model of mTORopathy

Authors :
Elise Marsan
Saeko Ishida
Adrien Schramm
Sarah Weckhuysen
Giuseppe Muraca
Sarah Lecas
Ning Liang
Caroline Treins
Mario Pende
Delphine Roussel
Michel Le Van Quyen
Tomoji Mashimo
Takehito Kaneko
Takashi Yamamoto
Tetsushi Sakuma
Séverine Mahon
Richard Miles
Eric Leguern
Stéphane Charpier
Stéphanie Baulac
Source :
Neurobiology of Disease, Vol 89, Iss , Pp 180-189 (2016)
Publication Year :
2016
Publisher :
Elsevier, 2016.

Abstract

DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5−/− embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5−/− embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5−/− embryos. Heterozygous Depdc5+/− rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5+/− rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.

Details

Language :
English
ISSN :
1095953X
Volume :
89
Issue :
180-189
Database :
Directory of Open Access Journals
Journal :
Neurobiology of Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.848e02bb7fa74f6fb765b3d6bcd24fad
Document Type :
article
Full Text :
https://doi.org/10.1016/j.nbd.2016.02.010