Back to Search Start Over

Identification of differentially expressed ER stress-related genes and their association with pulmonary arterial hypertension

Authors :
Qi Yang
Banghui Lai
Hao Xie
Mingbin Deng
Jun Li
Yan Yang
Juyi Wan
Bin Liao
Feng Liu
Source :
Respiratory Research, Vol 25, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. Methods The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. Results In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. Conclusions Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.

Details

Language :
English
ISSN :
1465993X
Volume :
25
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Respiratory Research
Publication Type :
Academic Journal
Accession number :
edsdoj.84b0aac664444ebc9f9ae4500bf8c8
Document Type :
article
Full Text :
https://doi.org/10.1186/s12931-024-02849-4