Back to Search Start Over

Transmission congestion management considering multiple and optimal capacity DGs

Authors :
Rajagopal PEESAPATI
Vinod Kumar YADAV
Niranjan KUMAR
Source :
Journal of Modern Power Systems and Clean Energy, Vol 5, Iss 5, Pp 713-724 (2017)
Publication Year :
2017
Publisher :
IEEE, 2017.

Abstract

Abstract Transmission congestion management became a grievous issue with the increase of competitiveness in the power systems. Competitiveness arises due to restructuring of the utilities along with the penetration of auxiliary services. The present study depicts a multi objective technique for achieving the optimal capacities of distributed generators (DG) such as solar, wind and biomass in order to relieve congestion in the transmission lines. Objectives like transmission congestion, real power loss, voltages and investment costs are considered to improve the technical and economical performances of the network. Multi objective particle swarm optimization algorithm is utilized to achieve the optimal sizes of unity power factor DG units. The insisted methodology is practiced on IEEE-30 and IEEE-118 bus systems to check the practical feasibility. The results of the proposed approach are compared with the genetic algorithm for both single and multi-objective cases. Results revealed that the intimated method can aid independent system operator to remove the burden from lines in the contingency conditions in an optimal manner along with the improvement in voltages and a reduction in real power losses of the network.

Details

Language :
English
ISSN :
21965625 and 21965420
Volume :
5
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Journal of Modern Power Systems and Clean Energy
Publication Type :
Academic Journal
Accession number :
edsdoj.84bffafff8d64f5080df7726275a4e81
Document Type :
article
Full Text :
https://doi.org/10.1007/s40565-017-0274-3