Back to Search
Start Over
Machine-learning-based Web system for the prediction of chronic kidney disease progression and mortality.
- Source :
- PLOS Digital Health, Vol 2, Iss 1, p e0000188 (2023)
- Publication Year :
- 2023
- Publisher :
- Public Library of Science (PLoS), 2023.
-
Abstract
- Chronic kidney disease (CKD) patients have high risks of end-stage kidney disease (ESKD) and pre-ESKD death. Therefore, accurately predicting these outcomes is useful among CKD patients, especially in those who are at high risk. Thus, we evaluated whether a machine-learning system can predict accurately these risks in CKD patients and attempted its application by developing a Web-based risk-prediction system. We developed 16 risk-prediction machine-learning models using Random Forest (RF), Gradient Boosting Decision Tree, and eXtreme Gradient Boosting with 22 variables or selected variables for the prediction of the primary outcome (ESKD or death) on the basis of repeatedly measured data of CKD patients (n = 3,714; repeatedly measured data, n = 66,981) in their electronic-medical records. The performances of the models were evaluated using data from a cohort study of CKD patients carried out over 3 years (n = 26,906). One RF model with 22 variables and another RF model with 8 variables of time-series data showed high accuracies of the prediction of the outcomes and were selected for use in a risk-prediction system. In the validation, the 22- and 8-variable RF models showed high C-statistics for the prediction of the outcomes: 0.932 (95% CI 0.916, 0.948) and 0.93 (0.915, 0.945), respectively. Cox proportional hazards models using splines showed a highly significant relationship between the high probability and high risk of an outcome (p
- Subjects :
- Computer applications to medicine. Medical informatics
R858-859.7
Subjects
Details
- Language :
- English
- ISSN :
- 27673170
- Volume :
- 2
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- PLOS Digital Health
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.84cb4ea61898460182a5fc645e28236b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pdig.0000188