Back to Search
Start Over
Th17 cells inhibit CD8+ T cell migration by systematically downregulating CXCR3 expression via IL-17A/STAT3 in advanced-stage colorectal cancer patients
- Source :
- Journal of Hematology & Oncology, Vol 13, Iss 1, Pp 1-15 (2020)
- Publication Year :
- 2020
- Publisher :
- BMC, 2020.
-
Abstract
- Abstract Background CD8+ T cell trafficking to the tumor site is essential for effective colorectal cancer (CRC) immunotherapy. However, the mechanism underlying CD8+ T cell infiltration in colorectal tumor tissues is not fully understood. In the present study, we investigated CD8+ T cell infiltration in CRC tissues and the role of chemokine–chemokine receptor signaling in regulation of T cell recruitment. Methods We screened chemokines and cytokines in healthy donor and CRC tissues from early- and advanced-stage patients using multiplex assays and PCR screening. We also utilized transcription factor activation profiling arrays and established a xenograft mouse model. Results Compared with tumor tissues of early-stage CRC patients, CD8+ T cell density was lower in advanced-stage tumor tissues. PCR screening showed that CXCL10 levels were significantly increased in advanced-stage tumor tissues. CXCR3 (the receptor of CXCL10) expression on CD8+ T cells was lower in the peripheral blood of advanced-stage patients. The migratory ability of CD8+ T cells to CXCL10 depended on CXCR3 expression. Multiplex arrays showed that IL-17A was increased in advanced-stage patient sera, which markedly downregulated CXCR3 expression via activating STAT3 signaling and reduced CD8+ T cell migration. Similar results were found after CD8+ T cells were treated with Th17 cell supernatant. Adding anti-IL-17A or the STAT3 inhibitor, Stattic, rescued these effects in vitro and in vivo. Moreover, survival analysis showed that patients with low CD8 and CXCR3 expression and high IL-17A levels had significantly worse prognosis. Conclusions CD8+ T cell infiltration in advanced-stage tumor was systematically inhibited by Th17 cells via IL-17A/STAT3/CXCR3 axis. Our findings indicate that the T cell infiltration in the tumor microenvironment may be improved by inhibiting STAT3 signaling.
Details
- Language :
- English
- ISSN :
- 17568722
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Hematology & Oncology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.85102b37a5314740b31fed3b0957222e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13045-020-00897-z