Back to Search Start Over

Targeting YAP1‐regulated Glycolysis in Fibroblast‐Like Synoviocytes Impairs Macrophage Infiltration to Ameliorate Diabetic Osteoarthritis Progression

Authors :
Jie Yang
Shanshan Li
Zhenyan Li
Lutian Yao
Meijing Liu
Kui‐Leung Tong
Qiutong Xu
Bo Yu
Rui Peng
Tao Gui
Wang Tang
Yidi Xu
Jiaxu Chen
Jun He
Kewei Zhao
Xiaogang Wang
Xiaoying Wang
Zhengang Zha
Huan‐Tian Zhang
Source :
Advanced Science, Vol 11, Iss 5, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract The interplay between immune cells/macrophages and fibroblast‐like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single‐cell RNA sequencing (scRNA‐seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients’ synovial macrophage infiltration and polarization. In addition, the yes‐associated protein 1 (YAP1)/thioredoxin‐interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)‐dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule‐1 (ICAM‐1) which may subsequently fine‐tune the infiltration of M1‐polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane‐camouflaged Verteporfin (Vt)‐loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1‐polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.85f7e83775394f3ab501f3f6afdb21e1
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202304617