Back to Search Start Over

Electrospun PA66/Graphene Fiber Films and Application on Flexible Triboelectric Nanogenerators

Authors :
Qiupeng Wu
Zhiheng Yu
Fengli Huang
Jinmei Gu
Source :
Materials, Vol 15, Iss 15, p 5191 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Triboelectric nanogenerators (TENGs) are considered to be the most promising energy supply equipment for wearable devices, due to their excellent portability and good mechanical properties. Nevertheless, low power generation efficiency, high fabrication difficulty, and poor wearability hinder their application in the wearable field. In this work, PA66/graphene fiber films with 0, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt% graphene and PVDF films were prepared by electrospinning. Meanwhile, TENGs were prepared with PA66/graphene fiber films, PVDF films and plain weave conductive cloth, which were used as the positive friction layer, negative friction layer and the flexible substrate, respectively. The results demonstrated that TENGs prepared by PA66/graphene fiber films with 2 wt% grapheme showed the best performance, and that the maximum open circuit voltage and short circuit current of TENGs could reach 180 V and 7.8 μA, respectively, and that the power density was 2.67 W/m2 when the external load was 113 MΩ. This is why the PA66/graphene film produced a more subtle secondary network with the addition of graphene, used as a charge capture site to increase its surface charge. Additionally, all the layered structures of TENGs were composed of breathable electrospun films and plain conductive cloth, with water vapor transmittance (WVT) of 9.6 Kgm−2d−1, reflecting excellent wearing comfort. The study showed that TENGs, based on all electrospinning, have great potential in the field of wearable energy supply devices.

Details

Language :
English
ISSN :
19961944
Volume :
15
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.868682aed0e84f5c86d43449857588a7
Document Type :
article
Full Text :
https://doi.org/10.3390/ma15155191