Back to Search Start Over

i5mC-DCGA: an improved hybrid network framework based on the CBAM attention mechanism for identifying promoter 5mC sites

Authors :
Jianhua Jia
Rufeng Lei
Lulu Qin
Xin Wei
Source :
BMC Genomics, Vol 25, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background 5-Methylcytosine (5mC) plays a very important role in gene stability, transcription, and development. Therefore, accurate identification of the 5mC site is of key importance in genetic and pathological studies. However, traditional experimental methods for identifying 5mC sites are time-consuming and costly, so there is an urgent need to develop computational methods to automatically detect and identify these 5mC sites. Results Deep learning methods have shown great potential in the field of 5mC sites, so we developed a deep learning combinatorial model called i5mC-DCGA. The model innovatively uses the Convolutional Block Attention Module (CBAM) to improve the Dense Convolutional Network (DenseNet), which is improved to extract advanced local feature information. Subsequently, we combined a Bidirectional Gated Recurrent Unit (BiGRU) and a Self-Attention mechanism to extract global feature information. Our model can learn feature representations of abstract and complex from simple sequence coding, while having the ability to solve the sample imbalance problem in benchmark datasets. The experimental results show that the i5mC-DCGA model achieves 97.02%, 96.52%, 96.58% and 85.58% in sensitivity (Sn), specificity (Sp), accuracy (Acc) and matthews correlation coefficient (MCC), respectively. Conclusions The i5mC-DCGA model outperforms other existing prediction tools in predicting 5mC sites, and it is currently the most representative promoter 5mC site prediction tool. The benchmark dataset and source code for the i5mC-DCGA model can be found in https://github.com/leirufeng/i5mC-DCGA .

Details

Language :
English
ISSN :
14712164
Volume :
25
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.86bbf780964a70b02732f897b28bdf
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-024-10154-z