Back to Search Start Over

Photoinduced copper-catalyzed C–N coupling with trifluoromethylated arenes

Authors :
Jun Huang
Qi Gao
Tao Zhong
Shuai Chen
Wei Lin
Jie Han
Jin Xie
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Selective defluorinative functionalization of trifluoromethyl group (–CF3) is an attractive synthetic route to the pharmaceutically privileged fluorine-containing moiety. Herein, we report a strategy based on photoexcited copper catalysis to activate the C–F bond of di- or trifluoromethylated arenes for divergent radical C–N coupling with carbazoles and aromatic amines. The use of different ligands can tune the reaction products diversity. A range of substituted, structurally diverse α,α-difluoromethylamines can be obtained from trifluoromethylated arenes via defluorinative C-N coupling with carbazoles, while an interesting double defluorinative C-N coupling is ready for difluoromethylated arenes. Based on this success, a carbazole-centered PNP ligand is designed to be an optimal ligand, enabling a copper-catalyzed C–N coupling for the construction of imidoyl fluorides from aromatic amines through double C-F bond functionalization. Interestingly, a 1,2-difluoroalkylamination strategy of styrenes is also developed, delivering γ,γ-difluoroalkylamines, a bioisostere to β-aminoketones, in synthetically useful yields. The DFT studies reveal an inner-sphere electron transfer mechanism for Cu-catalyzed selective activation of C(sp3)–F bonds.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.86f303faa1914cf48c89dd2cd9e7724b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-44097-y