Back to Search
Start Over
Co2 and Co3 Mixed Cluster Secondary Building Unit Approach toward a Three-Dimensional Metal-Organic Framework with Permanent Porosity
- Source :
- Molecules, Vol 23, Iss 4, p 755 (2018)
- Publication Year :
- 2018
- Publisher :
- MDPI AG, 2018.
-
Abstract
- Large and permanent porosity is the primary concern when designing metal-organic frameworks (MOFs) for specific applications, such as catalysis and drug delivery. In this article, we report a MOF Co11(BTB)6(NO3)4(DEF)2(H2O)14 (1, H3BTB = 1,3,5-tris(4-carboxyphenyl)benzene; DEF = N,N-diethylformamide) via a mixed cluster secondary building unit (SBU) approach. MOF 1 is sustained by a rare combination of a linear trinuclear Co3 and two types of dinuclear Co2 SBUs in a 1:2:2 ratio. These SBUs are bridged by BTB ligands to yield a three-dimensional (3D) non-interpenetrated MOF as a result of the less effective packing due to the geometrically contrasting SBUs. The guest-free framework of 1 has an estimated density of 0.469 g cm−3 and exhibits a potential solvent accessible void of 69.6% of the total cell volume. The activated sample of 1 exhibits an estimated Brunauer-Emmett-Teller (BET) surface area of 155 m2 g−1 and is capable of CO2 uptake of 58.61 cm3 g−1 (2.63 mmol g−1, 11.6 wt % at standard temperature and pressure) in a reversible manner at 195 K, showcasing its permanent porosity.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 23
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.87210f0dc0ea425cb033bee184e2166c
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules23040755