Back to Search Start Over

Neurokinin-1 Receptor Signaling Is Required for Efficient Ca2+ Flux in T-Cell-Receptor-Activated T Cells

Authors :
Adrian E. Morelli
Tina L. Sumpter
Darling M. Rojas-Canales
Mohna Bandyopadhyay
Zhizhao Chen
Olga Tkacheva
William J. Shufesky
Callen T. Wallace
Simon C. Watkins
Alexandra Berger
Christopher J. Paige
Louis D. Falo, Jr.
Adriana T. Larregina
Source :
Cell Reports, Vol 30, Iss 10, Pp 3448-3465.e8 (2020)
Publication Year :
2020
Publisher :
Elsevier, 2020.

Abstract

Summary: Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors. : The neurokinin 1 receptor (NK1R) induces Ca2+ flux in excitable cells. Here, Morelli et al. show that NK1R signaling in T cells promotes optimal Ca2+ flux triggered by TCR stimulation, which is necessary to sustain T cell survival and the efficient Th1- and Th17-based immunity that is relevant for immunotherapies based on pro-inflammatory neuropeptides. Keywords: neurokinin-1 receptor, T cell receptor, G-protein-coupled receptors, Ca2+ flux, Gαq/11, substance P, hemokinin-1, T cell activation, T cell bias, T cell survival

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
22111247
Volume :
30
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Cell Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8754f15be35f40a1af5f7a3af7cdad07
Document Type :
article
Full Text :
https://doi.org/10.1016/j.celrep.2020.02.054