Back to Search Start Over

Deciphering antifungal and antibiofilm mechanisms of isobavachalcone against Cryptococcus neoformans through RNA-seq and functional analyses

Authors :
Weidong Qian
Jiaxing Lu
Chang Gao
Qiming Liu
Yongdong Li
Qiao Zeng
Jian Zhang
Ting Wang
Si Chen
Source :
Microbial Cell Factories, Vol 23, Iss 1, Pp 1-21 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.

Details

Language :
English
ISSN :
14752859
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbial Cell Factories
Publication Type :
Academic Journal
Accession number :
edsdoj.876f4585f3b54051b6167d5df9f3625a
Document Type :
article
Full Text :
https://doi.org/10.1186/s12934-024-02369-2