Back to Search Start Over

Image inpainting network based on multi‐level attention mechanism

Authors :
Hongyue Xiang
Weidong Min
Zitai Wei
Meng Zhu
Mengxue Liu
Ziyang Deng
Source :
IET Image Processing, Vol 18, Iss 2, Pp 428-438 (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Image inpainting networks based on deep learning techniques have been widely used in many important fields. However, most inpainting networks fail to generate desirable repaired images. This may be due to their failure to extract effective features and accurately assign high weights to the undamaged regions. To alleviate these problems, an image inpainting network based on gated convolution and multi‐level attention mechanism (IIN‐GCMAM) is proposed in this paper. This network follows encoder–decoder architecture, consisting of the gated convolution encoder (GC‐encoder) and the multi‐level attention mechanism decoder (MAM‐decoder). The GC‐encoder weighs the extracted features with gated convolutions, which reduces the interference caused by the damaged regions. The multi‐level attention mechanism employed in the MAM‐decoder uses multi‐scale feature maps spatially and channel‐wise to improve the consistency in global structure and the fineness of repaired results. Extensive experiments are conducted on the common datasets, Paris StreetView and CelebA. Experimental results indicate that the proposed IIN‐GCMAM can achieve a good performance on the common evaluation metrics and visual effects. It can achieve 0.0408, 0.720, and 22.27 in MAE, SSIM, and PSNR at the mask ratio of 50%–60%, respectively.

Details

Language :
English
ISSN :
17519667 and 17519659
Volume :
18
Issue :
2
Database :
Directory of Open Access Journals
Journal :
IET Image Processing
Publication Type :
Academic Journal
Accession number :
edsdoj.8789288d2bd542d9a75d03ff5a18e4d6
Document Type :
article
Full Text :
https://doi.org/10.1049/ipr2.12958