Back to Search Start Over

Diagnostic classification of cancers using DNA methylation of paracancerous tissues

Authors :
Baoshan Ma
Bingjie Chai
Heng Dong
Jishuang Qi
Pengcheng Wang
Tong Xiong
Yi Gong
Di Li
Shuxin Liu
Fengju Song
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-14 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract The potential role of DNA methylation from paracancerous tissues in cancer diagnosis has not been explored until now. In this study, we built classification models using well-known machine learning models based on DNA methylation profiles of paracancerous tissues. We evaluated our methods on nine cancer datasets collected from The Cancer Genome Atlas (TCGA) and utilized fivefold cross-validation to assess the performance of models. Additionally, we performed gene ontology (GO) enrichment analysis on the basis of the significant CpG sites selected by feature importance scores of XGBoost model, aiming to identify biological pathways involved in cancer progression. We also exploited the XGBoost algorithm to classify cancer types using DNA methylation profiles of paracancerous tissues in external validation datasets. Comparative experiments suggested that XGBoost achieved better predictive performance than the other four machine learning methods in predicting cancer stage. GO enrichment analysis revealed key pathways involved, highlighting the importance of paracancerous tissues in cancer progression. Furthermore, XGBoost model can accurately classify nine different cancers from TCGA, and the feature sets selected by XGBoost can also effectively predict seven cancer types on independent GEO datasets. This study provided new insights into cancer diagnosis from an epigenetic perspective and may facilitate the development of personalized diagnosis and treatment strategies.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.878c0bc9b7e437d86ab04b7e24cfa3a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-14786-7