Back to Search
Start Over
Robust SNP-based prediction of rheumatoid arthritis through machine-learning-optimized polygenic risk score
- Source :
- Journal of Translational Medicine, Vol 21, Iss 1, Pp 1-17 (2023)
- Publication Year :
- 2023
- Publisher :
- BMC, 2023.
-
Abstract
- Abstract Background The popular statistics-based Genome-wide association studies (GWAS) have provided deep insights into the field of complex disorder genetics. However, its clinical applicability to predict disease/trait outcomes remains unclear as statistical models are not designed to make predictions. This study employs statistics-free machine-learning (ML)-optimized polygenic risk score (PRS) to complement existing GWAS and bring the prediction of disease/trait outcomes closer to clinical application. Rheumatoid Arthritis (RA) was selected as a model disease to demonstrate the robustness of ML in disease prediction as RA is a prevalent chronic inflammatory joint disease with high mortality rates, affecting adults at the economic prime. Early identification of at-risk individuals may facilitate measures to mitigate the effects of the disease. Methods This study employs a robust ML feature selection algorithm to identify single nucleotide polymorphisms (SNPs) that can predict RA from a set of training data comprising RA patients and population control samples. Thereafter, selected SNPs were evaluated for their predictive performances across 3 independent, unseen test datasets. The selected SNPs were subsequently used to generate PRS which was also evaluated for its predictive capacity as a sole feature. Results Through robust ML feature selection, 9 SNPs were found to be the minimum number of features for excellent predictive performance (AUC > 0.9) in 3 independent, unseen test datasets. PRS based on these 9 SNPs was significantly associated with (P 0.9) of RA in the 3 unseen datasets. A RA ML-PRS calculator of these 9 SNPs was developed ( https://xistance.shinyapps.io/prs-ra/ ) to facilitate individualized clinical applicability. The majority of the predictive SNPs are protective, reside in non-coding regions, and are either predicted to be potentially functional SNPs (pfSNPs) or in high linkage disequilibrium (r2 > 0.8) with un-interrogated pfSNPs. Conclusions These findings highlight the promise of this ML strategy to identify useful genetic features that can robustly predict disease and amenable to translation for clinical application.
Details
- Language :
- English
- ISSN :
- 14795876
- Volume :
- 21
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Translational Medicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.87deb690648f4aca92310084051267ce
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12967-023-03939-5