Back to Search Start Over

Effects of arbuscular mycorrhizal fungi on the reduction of arsenic accumulation in plants: a meta-analysis

Authors :
Shangyan Hao
Ye Tian
Zhiqing Lin
Linzhi Xie
Xinbin Zhou
Gary S. Bañuelos
Source :
Frontiers in Plant Science, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Arsenic (As) accumulation in plants is a global concern. Although the application of arbuscular mycorrhizal fungi (AMF) has been suggested as a potential solution to decrease As concentration in plants, there is currently a gap in a comprehensive, quantitative assessment of the abiotic and biotic factors influencing As accumulation. A meta-analysis was performed to quantitatively investigate the findings of 76 publications on the impacts of AMF, plant properties, and soil on As accumulation in plants. Results showed a significant dose-dependent As reduction with higher mycorrhizal infection rates, leading to a 19.3% decrease in As concentration. AMF reduced As(V) by 19.4% but increased dimethylarsenic acid (DMA) by 50.8%. AMF significantly decreased grain As concentration by 34.1%. AMF also improved plant P concentration and dry biomass by 33.0% and 62.0%, respectively. The most significant reducing effects of As on AMF properties were seen in single inoculation and experiments with intermediate durations. Additionally, the benefits of AMF were significantly enhanced when soil texture, soil organic carbon (SOC), pH level, Olsen-P, and DTPA-As were sandy soil, 0.8%–1.5%, ≥7.5, ≥9.1 mg/kg, and 30–60 mg/kg, respectively. AMF increased easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP) by 23.0% and 28.0%, respectively. Overall, the investigated factors had significant implications in developing AMF-based methods for alleviating the negative effects of As stress on plants.

Details

Language :
English
ISSN :
1664462X
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.890cafc1a5eb49f2ba86e58053c3ed6a
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2024.1327649