Back to Search
Start Over
Communication-efficient federated learning via knowledge distillation
- Source :
- Nature Communications, Vol 13, Iss 1, Pp 1-8 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- This work presents a communication-efficient federated learning method that saves a major fraction of communication cost. It reveals the advantage of reciprocal learning in machine knowledge transfer and the evolutional low-rank properties of deep model updates.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.89508449f9f4c23abb84000b24c63d0
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-022-29763-x