Back to Search Start Over

Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm

Authors :
Jean-François Hamel
Sara Jobson
Guillaume Caulier
Annie Mercier
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Recent efforts have been devoted to the link between responses to non-physical stressors and immune states in animals, mostly using human and other vertebrate models. Despite evolutionary relevance, comparatively limited work on the appraisal of predation risk and aspects of cognitive ecology and ecoimmunology has been carried out in non-chordate animals. The present study explored the capacity of holothuroid echinoderms to display an immune response to both reactive and anticipatory predatory stressors. Experimental trials and a mix of behavioural, cellular and hormonal markers were used, with a focus on coelomocytes (analogues of mammalian leukocytes), which are the main components of the echinoderm innate immunity. Findings suggest that holothuroids can not only appraise threatening cues (i.e. scent of a predator or alarm signals from injured conspecifics) but prepare themselves immunologically, presumably to cope more efficiently with potential future injuries. The responses share features with recently defined central emotional states and wane after prolonged stress in a manner akin to habituation, which are traits that have rarely been shown in non-vertebrates, and never in echinoderms. Because echinoderms sit alongside chordates in the deuterostome clade, such findings offer unique insights into the adaptive value and evolution of stress responses in animals.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.895dec800fc144deb44fb455c9c6206e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-89805-0