Back to Search
Start Over
The Value of Metagenomic Next-Generation Sequencing in Hematological Malignancy Patients with Febrile Neutropenia After Empiric Antibiotic Treatment Failure
- Source :
- Infection and Drug Resistance, Vol Volume 15, Pp 3549-3559 (2022)
- Publication Year :
- 2022
- Publisher :
- Dove Medical Press, 2022.
-
Abstract
- Meng Zhang,1,2,&ast; Zhao Wang,2,&ast; Jiaxi Wang,1 Hairong Lv,2 Xia Xiao,2 Wenyi Lu,2 Xin Jin,2 Juanxia Meng,2 Yedi Pu,2 MingFeng Zhao2 1First Central Clinical College, Tianjin Medical University, Tianjin, 300192, People’s Republic of China; 2Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, People’s Republic of China&ast;These authors contributed equally to this workCorrespondence: MingFeng Zhao, Department of Hematology, Tianjin First Central Hospital, No. 24, Fukang Road, Nankai District, Tianjin, 300192, People’s Republic of China, Tel +16622082788, Email mingfengzhao@sina.comBackground: It was crucial to use empirical antibiotics in febrile neutropenia (FN) patients. However, most patients still died from infection due to poor efficacy. Metagenomic next-generation sequencing (mNGS) is a rapid microbiological diagnostic method. The value of mNGS in patients with FN remains to be studied, especially after empiric antibiotic treatment.Methods: We retrospectively analyzed the differences between mNGS and the traditional methods in 192 patients with hematological malignancies who have received empiric antibiotic treatment. Samples were collected when patient had chills or half an hour before peak body temperature. And we compared the differences between FN and non-FN patients, mainly including types of pathogens and the diagnostic value of different pathogens.Results: Despite receiving empirical treatment, the pathogen detection rate of mNGS was significantly higher than the traditional method (80.21% vs 25.00%, P< 0.001). And it has obvious advantages in detecting mixed pathogens infection (80.21% vs 4.17%, P< 0.001). Then, we found that mNGS saw more pathogens in the FN than in the non-FN group, especially fungus. 21/33 (63.63%) of FN patients was diagnosed with fungal infections. The fungal detection rate in FN was significantly higher than non-FN group (32.35% vs 12.22%, P=0.001). Besides, the sensitivity of mNGS was higher than the traditional methods in both FN and non-FN group (P< 0.001), but no significant difference in specificity (P> 0.05). In the FN group, empiric antibiotic treatment of 46/102 (45.10%) patients did not treat all the pathogens detected by mNGS. After adjusting the antimicrobial regimen according to the results of mNGS, the effective rate at 72 hours and 7 days was 22/46 (47.83%) and 24/102 (52.17%), respectively.Conclusion: mNGS had a significant impact on the diagnosis of infection and the second-line antimicrobial therapy in FN. mNGS plays a more important role in FN patients, especially in the diagnosis of fungal infections.Purpose: Firstly, we compared the difference between mNGS and the traditional methods in the diagnosis of infection. Secondly, we assessed the value of mNGS in FN patients by comparing it with non-FN patients, including types of pathogens and the diagnostic value of different pathogens. In order to show that mNGS plays a more important role in FN.Keywords: metagenomic next-generation sequencing, febrile neutropenia, infection, fever, empiric antibiotic treatment
Details
- Language :
- English
- ISSN :
- 11786973
- Volume :
- ume 15
- Database :
- Directory of Open Access Journals
- Journal :
- Infection and Drug Resistance
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8989c6a25d174444b85b664660970b59
- Document Type :
- article