Back to Search Start Over

The stromal-tumor amplifying STC1-Notch1 feedforward signal promotes the stemness of hepatocellular carcinoma

Authors :
Shuya Bai
Yuchong Zhao
Wei Chen
Wang Peng
Yun Wang
Si Xiong
Aruna
Yanling Li
Yilei Yang
Shiru Chen
Bin Cheng
Ronghua Wang
Source :
Journal of Translational Medicine, Vol 21, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment (TME), play crucial roles in tumor stemness. It has been shown in various cancer studies that stanniocalcin-1 (STC1) is secreted by CAFs, however, its function in HCC is still not clear. Methods The serum concentration and intracellular expression level of STC1 were quantified by ELISA and western blotting, respectively. The role of CAF-derived STC1 in HCC stemness was investigated by sphere formation, sorafenib resistance, colony formation, and transwell migration and invasion assays in vitro and in an orthotopic liver xenograft model in vivo. An HCC tissue microarray containing 72 samples was used to evaluate the expression of STC1 and Notch1 in HCC tissues. Coimmunoprecipitation (CoIP) and dual-luciferase reporter assays were performed to further explore the underlying mechanisms. ELISAs were used to measure the serum concentration of STC1 in HCC patients. Results We demonstrated that CAFs were the main source of STC1 in HCC and that CAF-derived STC1 promoted HCC stemness through activation of the Notch signaling pathway. In HCC patients, the expression of STC1 was positively correlated with Notch1 expression and poor prognosis. The co-IP assay showed that STC1 directly bound to Notch1 receptors to activate the Notch signaling pathway, thereby promoting the stemness of HCC cells. Our data further demonstrated that STC1 was a direct transcriptional target of CSL in HCC cells. Furthermore, ELISA revealed that the serum STC1 concentration was higher in patients with advanced liver cancer than in patients with early liver cancer. Conclusions CAF-derived STC1 promoted HCC stemness via the Notch1 signaling pathway. STC1 might serve as a potential biomarker for the prognostic assessment of HCC, and the stromal-tumor amplifying STC1-Notch1 feedforward signal could constitute an effective therapeutic target for HCC patients.

Details

Language :
English
ISSN :
14795876
Volume :
21
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.8a32c8ff9e41d1b015b0bf45c9f683
Document Type :
article
Full Text :
https://doi.org/10.1186/s12967-023-04085-8