Back to Search Start Over

Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia

Authors :
Xavier Cahu
Julien Calvo
Sandrine Poglio
Nais Prade
Benoit Colsch
Marie-Laure Arcangeli
Thierry Leblanc
Arnaud Petit
Frederic Baleydier
Andre Baruchel
Judith Landman-Parker
Christophe Junot
Jerome Larghero
Paola Ballerini
Eric Delabesse
Benjamin Uzan
Francoise Pflumio
Source :
Blood Advances, Vol 1, Iss 20, Pp 1760-1772 (2017)
Publication Year :
2017
Publisher :
Elsevier, 2017.

Abstract

Abstract: T-cell acute lymphoblastic leukemia (T-ALL) expands in various bone marrow (BM) sites of the body. We investigated whether different BM sites could differently modulate T-ALL propagation using in vivo animal models. We observed that mouse and human T-ALL develop slowly in the BM of tail vertebrae compared with the BM from thorax vertebrae. T-ALL recovered from tail BM displays lower cell-surface marker expression and decreased metabolism and cell-cycle progression, demonstrating a dormancy phenotype. Functionally, tail-derived T-ALL exhibit a deficient short-term ex vivo growth and a delayed in vivo propagation. These features are noncell-autonomous because T-ALL from tail and thorax shares identical genomic abnormalities and functional disparities disappear in vivo and in prolonged in vitro assays. Importantly tail-derived T-ALL displays higher intrinsic resistance to cell-cycle–related drugs (ie, vincristine sulfate and cytarabine). Of note, T-ALL recovered from gonadal adipose tissues or from cocultures with adipocytes shares metabolic, cell-cycle, and phenotypic or chemoresistance features, with tail-derived T-ALL suggesting adipocytes may participate in the tail BM imprints on T-ALL. Altogether these results demonstrate that BM sites differentially orchestrate T-ALL propagation stamping specific features to leukemic cells such as quiescence and decreased response to cell-cycle–dependent chemotherapy.

Details

Language :
English
ISSN :
24739529
Volume :
1
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Blood Advances
Publication Type :
Academic Journal
Accession number :
edsdoj.8a5ab4bef29543e99f617e6cbae7c387
Document Type :
article
Full Text :
https://doi.org/10.1182/bloodadvances.2017004960