Back to Search Start Over

Irradiance Restoration Based Shadow Compensation Approach for High Resolution Multispectral Satellite Remote Sensing Images

Authors :
Hongyin Han
Chengshan Han
Liang Huang
Taiji Lan
Xucheng Xue
Source :
Sensors, Vol 20, Iss 21, p 6053 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Numerous applications are hindered by shadows in high resolution satellite remote sensing images, like image classification, target recognition and change detection. In order to improve remote sensing image utilization, significant importance appears for restoring surface feature information under shadow regions. Problems inevitably occur for current shadow compensation methods in processing high resolution multispectral satellite remote sensing images, such as color distortion of compensated shadow and interference of non-shadow. In this study, to further settle these problems, we analyzed the surface irradiance of both shadow and non-shadow areas based on a satellite sensor imaging mechanism and radiative transfer theory, and finally develop an irradiance restoration based (IRB) shadow compensation approach under the assumption that the shadow area owns the same irradiance to the nearby non-shadow area containing the same type features. To validate the performance of the proposed IRB approach for shadow compensation, we tested numerous images of WorldView-2 and WorldView-3 acquired at different sites and times. We particularly evaluated the shadow compensation performance of the proposed IRB approach by qualitative visual sense comparison and quantitative assessment with two WorldView-3 test images of Tripoli, Libya. The resulting images automatically produced by our IRB method deliver a good visual sense and relatively low relative root mean square error (rRMSE) values. Experimental results show that the proposed IRB shadow compensation approach can not only compensate information of surface features in shadow areas both effectively and automatically, but can also well preserve information of objects in non-shadow regions for high resolution multispectral satellite remote sensing images.

Details

Language :
English
ISSN :
14248220
Volume :
20
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.8b77dc088ea4be29a3d2e97ee8d3420
Document Type :
article
Full Text :
https://doi.org/10.3390/s20216053