Back to Search
Start Over
Scalable interpolation of satellite altimetry data with probabilistic machine learning
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract We present GPSat; an open-source Python programming library for performing efficient interpolation of non-stationary satellite altimetry data, using scalable Gaussian process techniques. We use GPSat to generate complete maps of daily 50 km-gridded Arctic sea ice radar freeboard, and find that, relative to a previous interpolation scheme, GPSat offers a 504 × computational speedup, with less than 4 mm difference on the derived freeboards on average. We then demonstrate the scalability of GPSat through freeboard interpolation at 5 km resolution, and Sea-Level Anomalies (SLA) at the resolution of the altimeter footprint. Interpolated 5 km radar freeboards show strong agreement with airborne data (linear correlation of 0.66). Footprint-level SLA interpolation also shows improvements in predictive skill over linear regression. In this work, we suggest that GPSat could overcome the computational bottlenecks faced in many altimetry-based interpolation routines, and hence advance critical understanding of ocean and sea ice variability over short spatio-temporal scales.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8d0f5c37cee44e48ada5993d34540361
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-51900-x