Back to Search Start Over

Research on time-division multiplexing for error correction and privacy amplification in post-processing of quantum key distribution

Authors :
Lei Chen
Xiao-Ming Chen
Ya-Long Yan
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The post-processing of quantum key distribution mainly includes error correction and privacy amplification. The error correction algorithms and privacy amplification methods used in the existing quantum key distribution are completely unrelated. Based on the principle of correspondence between error-correcting codes and hash function families, we proposed the idea of time-division multiplexing for error correction and privacy amplification for the first time. That is to say, through the common error correction algorithms and their corresponding hash function families or the common hash function families and their corresponding error-correcting codes, error correction and privacy amplification can be realized by time-division multiplexing with the same set of devices. In addition, we tested the idea from the perspective of error correction and privacy amplification, respectively. The analysis results show that the existing error correction algorithms and their corresponding hash function families or the common privacy amplification methods and their corresponding error-correcting codes cannot realize time-division multiplexing for error correction and privacy amplification temporarily. However, according to the principle of correspondence between error-correcting codes and hash function families, the idea of time-division multiplexing is possible. Moreover, the research on time-division multiplexing for error correction and privacy amplification has some practical significance. Once the idea of time-division multiplexing is realized, it will further reduce the calculation and storage cost of the post-processing process, reduce the deployment cost of quantum key distribution, and help to remote the practical engineering of quantum key distribution.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8e1d1a9fa56f48a59d43cfe71249c1fc
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-77047-9