Back to Search Start Over

The comparisons of expression pattern reveal molecular regulation of fruit metabolites in S. nigrum and S. lycopersicum

Authors :
Jung Heo
Woo Young Bang
Jae Cheol Jeong
Sung-Chul Park
Je Min Lee
Sungho Choi
Byounghee Lee
Young Koung Lee
Keunhwa Kim
Soon Ju Park
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Solanum nigrum, known as black nightshade, is a medicinal plant that contains many beneficial metabolites in its fruit. The molecular mechanisms underlying the synthesis of these metabolites remain uninvestigated due to limited genetic information. Here, we identified 47,470 unigenes of S. nigrum from three different tissues by de novo transcriptome assembly, and 78.4% of these genes were functionally annotated. Moreover, gene ontology (GO) analysis using 18,860 differentially expressed genes (DEGs) revealed tissue-specific gene expression regulation. We compared gene expression patterns between S. nigrum and tomato (S. lycopersicum) in three tissue types. The expression patterns of carotenoid biosynthetic genes were different between the two species. Comparison of the expression patterns of flavonoid biosynthetic genes showed that 9 out of 14 enzyme-coding genes were highly upregulated in the fruit of S. nigrum. Using CRISPR-Cas9-mediated gene editing, we knocked out the R2R3-MYB transcription factor SnAN2 gene, an ortholog of S. lycopersicum ANTHOCYANIN 2. The mutants showed yellow/green fruits, suggesting that SnAN2 plays a major role in anthocyanin synthesis in S. nigrum. This study revealed the connection between gene expression regulation and corresponding phenotypic differences through comparative analysis between two closely related species and provided genetic resources for S. nigrum.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8f370e97d3c745168ee1e66786114405
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-09032-z