Back to Search Start Over

A Derivative Hilbert operator acting from Bergman spaces to Hardy spaces

Authors :
Yun Xu
Shanli Ye
Source :
AIMS Mathematics, Vol 8, Iss 4, Pp 9290-9302 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

Let $ \mu $ be a positive Borel measure on the interval $ [0, 1) $. The Hankel matrix $ \mathcal{H}_{\mu} = (\mu_{n, k})_{n, k\geq 0} $ with entries $ \mu_{n, k} = \mu_{n+k} $, where $ \mu_{n} = \int_{[0, 1)}t^nd\mu(t) $, formally induces the operator as follows: $ \mathcal{DH}_\mu(f)(z) = \sum\limits_{n = 0}^\infty\left(\sum\limits_{k = 0}^\infty \mu_{n,k}a_k\right)(n+1)z^n , \; z\in \mathbb{D}, $ where $ f(z) = \sum_{n = 0}^\infty a_nz^n $ is an analytic function in $ \mathbb{D} $. In this article, we characterize those positive Borel measures on $ [0, 1) $ such that $ \mathcal{DH}_\mu $ is bounded (resp., compact) from Bergman spaces $ \mathcal{A}^p $ into Hardy spaces $ H^q $, where $ 0 < p, q < \infty $.

Details

Language :
English
ISSN :
24736988
Volume :
8
Issue :
4
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.8f65739ebe484252b86eab4aed121577
Document Type :
article
Full Text :
https://doi.org/10.3934/math.2023466?viewType=HTML