Back to Search Start Over

Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machineResearch in context

Authors :
Jinjin Liu
Haoli Xu
Qian Chen
Tingting Zhang
Wenshuang Sheng
Qun Huang
Jiawen Song
Dingpin Huang
Li Lan
Yanxuan Li
Weijian Chen
Yunjun Yang
Source :
EBioMedicine, Vol 43, Iss , Pp 454-459 (2019)
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

Background: Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high mortality rate. This study aimed to predict hematoma expansion in spontaneous ICH from routinely available variables by using support vector machine (SVM) method. Methods: We retrospectively reviewed 1157 patients with spontaneous ICH who underwent initial computed tomography (CT) scan within 6 h and follow-up CT scan within 72 h from symptom onset in our hospital between September 2013 and August 2018. Hematoma region was manually segmented at each slice to guarantee the measurement accuracy of hematoma volume. Hematoma expansion was defined as a proportional increase of hematoma volume > 33% or an absolute growth of hematoma volume > 6 mL from initial CT scan to follow-up CT scan. Univariate and multivariate analyses were performed to assess the association between clinical variables and hematoma expansion. SVM machine learning model was developed to predict hematoma expansion. Findings: 246 of 1157 (21.3%) patients experienced hematoma expansion. Multivariate analyses revealed the following 6 independent factors associated with hematoma expansion: male patient (odds ratio [OR] = 1.82), time to initial CT scan (OR = 0.73), Glasgow Coma Scale (OR = 0.86), fibrinogen level (OR = 0.72), black hole sign (OR = 2.52), and blend sign (OR = 4.03). The SVM model achieved a mean sensitivity of 81.3%, specificity of 84.8%, overall accuracy of 83.3%, and area under receiver operating characteristic curve (AUC) of 0.89 in prediction of hematoma expansion. Interpretation: The designed SVM model presented good performance in predicting hematoma expansion from routinely available variables. Fund: This work was supported by Health Foundation for Creative Talents in Zhejiang Province, China, Natural Science Foundation of Zhejiang Province, China (LQ15H180002), the Science and Technology Planning Projects of Wenzhou, China (Y20180112), Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China, and Project Foundation for the College Young and Middle-aged Academic Leader of Zhejiang Province, China. The funders had no role in study design, data collection, data analysis, interpretation, writing of the report. Keywords: Spontaneous intracerebral hemorrhage, Hematoma, CT, Stroke, Support vector machine

Subjects

Subjects :
Medicine
Medicine (General)
R5-920

Details

Language :
English
ISSN :
23523964
Volume :
43
Issue :
454-459
Database :
Directory of Open Access Journals
Journal :
EBioMedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.9033fa232cfd42508f9f7ecbcd30f6f1
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ebiom.2019.04.040