Back to Search Start Over

Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system

Authors :
Muhammad Ali Raza
Ling Yang Feng
Wopke van derWerf
Nasir Iqbal
Imran Khan
Ahsin Khan
Atta Mohi Ud Din
Muhammd Naeem
Tehseen Ahmad Meraj
Muhammad Jawad Hassan
Aaqil Khan
Feng Zhi Lu
Xin Liu
Mukhtar Ahmed
Feng Yang
Wenyu Yang
Source :
Food and Energy Security, Vol 9, Iss 2, Pp n/a-n/a (2020)
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

Abstract Strip width management is a critical factor for producing higher crop yields in relay intercropping systems. A 2‐year field experiment was carried out during 2012 and 2013 to evaluate the effects of different strip width treatments on dry‐matter production, major‐nutrient (nitrogen, phosphorus, and potassium) uptake, and competition parameters of soybean and maize in relay intercropping system. The strip width (SW) treatments were 0.40, 0.40, and 0.40 m (SW1); 0.40, 0.40, and 0.50 m (SW2); 0.40, 0.40, and 0.60 m (SW3); and 0.40, 0.40, and 0.70 m (SW4) for soybean row spacing, maize row spacing, and spacing between soybean and maize rows, respectively. As compared to sole maize (SM) and sole soybean (SS), relay‐intercropped maize and soybean accumulated lower quantities of nitrogen, phosphorus, and potassium in all treatments. However, maize in SW1 accumulated higher nitrogen, phosphorus, and potassium than SW4 (9%, 9%, and 8% for nitrogen, phosphorus, and potassium, respectively). Soybean in SW3 accumulated 25% higher nitrogen, 33% higher phosphorus, and 24% higher potassium than in SW1. The improved nutrient accumulation in SW3 significantly increased the soybean dry matter by 19%, but slightly decreased the maize dry matter by 6% compared to SW1. Similarly, SW3 increased the competition ratio value of soybean (by 151%), but it reduced the competition ratio value of maize (by 171%) compared to SW1. On average, in SW3, relay‐cropped soybean produced 84% of SS seed yield and maize produced 98% of SM seed yield and achieved the land equivalent ratio of 1.8, demonstrating the highest level in the world. Overall, these results suggested that by selecting the appropriate strip width (SW3; 0.40 m for soybean row spacing, 0.40 m maize row spacing, and 0.60 m spacing between soybean and maize rows), we can increase the nutrient uptake (especially nitrogen, phosphorus, and potassium), dry‐matter accumulation, and seed yields of relay‐intercrop species under relay intercropping systems.

Details

Language :
English
ISSN :
20483694
Volume :
9
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Food and Energy Security
Publication Type :
Academic Journal
Accession number :
edsdoj.90c3c0527a4e07945bf88e11a3f10c
Document Type :
article
Full Text :
https://doi.org/10.1002/fes3.199