Back to Search Start Over

Sodium acetate increases the productivity of HEK293 cells expressing the ECD-Her1 protein in batch cultures: experimental results and metabolic flux analysis

Authors :
Bárbara Ariane Pérez-Fernández
Lisandra Calzadilla
Chiara Enrico Bena
Marco Del Giudice
Carla Bosia
Tammy Boggiano
Roberto Mulet
Source :
Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.

Details

Language :
English
ISSN :
22964185
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Bioengineering and Biotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.90d82b2a4653a44b8b00b4157ba1
Document Type :
article
Full Text :
https://doi.org/10.3389/fbioe.2024.1335898