Back to Search Start Over

Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD

Authors :
Li-Chao Fan
Keith McConn
Maria Plataki
Sarah Kenny
Niamh C. Williams
Kihwan Kim
Jennifer A. Quirke
Yan Chen
Maor Sauler
Matthias E. Möbius
Kuei-Pin Chung
Estela Area Gomez
Augustine M.K. Choi
Jin-Fu Xu
Suzanne M. Cloonan
Source :
JCI Insight, Vol 8, Iss 16 (2023)
Publication Year :
2023
Publisher :
American Society for Clinical investigation, 2023.

Abstract

Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid–containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.

Subjects

Subjects :
Metabolism
Pulmonology
Medicine

Details

Language :
English
ISSN :
23793708
Volume :
8
Issue :
16
Database :
Directory of Open Access Journals
Journal :
JCI Insight
Publication Type :
Academic Journal
Accession number :
edsdoj.910a3aa87af04e5b8dd78a4d554b5f55
Document Type :
article
Full Text :
https://doi.org/10.1172/jci.insight.163403