Back to Search Start Over

Orthologous genes identified by transcriptome sequencing in the spider genus Stegodyphus

Orthologous genes identified by transcriptome sequencing in the spider genus Stegodyphus

Authors :
Mattila Tiina M
Bechsgaard Jesper S
Hansen Troels T
Schierup Mikkel H
Bilde Trine
Source :
BMC Genomics, Vol 13, Iss 1, p 70 (2012)
Publication Year :
2012
Publisher :
BMC, 2012.

Abstract

Abstract Background The evolution of sociality in spiders involves a transition from an outcrossing to a highly inbreeding mating system, a shift to a female biased sex ratio, and an increase in the reproductive skew among individuals. Taken together, these features are expected to result in a strong reduction in the effective population size. Such a decline in effective population size is expected to affect population genetic and molecular evolutionary processes, resulting in reduced genetic diversity and relaxed selective constraint across the genome. In the genus Stegodyphus, permanent sociality and regular inbreeding has evolved independently three times from periodic-social (outcrossing) ancestors. This genus is therefore an ideal model for comparative studies of the molecular evolutionary and population genetic consequences of the transition to a regularly inbreeding mating system. However, no genetic resources are available for this genus. Results We present the analysis of high throughput transcriptome sequencing of three Stegodyphus species. Two of these are periodic-social (Stegodyphus lineatus and S.tentoriicola) and one is permanently social (S. mimosarum). From non-normalized cDNA libraries, we obtained on average 7,000 putative uni-genes for each species. Three-way orthology, as predicted from reciprocal BLAST, identified 1,792 genes that could be used for cross-species comparison. Open reading frames (ORFs) could be deduced from 1,345 of the three-way alignments. Preliminary molecular analyses suggest a five- to ten-fold reduction in heterozygosity in the social S. mimosarum compared with the periodic-social species. Furthermore, an increased ratio of non-synonymous to synonymous polymorphisms in the social species indicated relaxed efficiency of selection. However, there was no sign of relaxed selection on the phylogenetic branch leading to S. mimosarum. Conclusions The 1,792 three-way ortholog genes identified in this study provide a unique resource for comparative studies of the eco-genomics, population genetics and molecular evolution of repeated evolution of inbreeding sociality within the Stegodyphus genus. Preliminary analyses support theoretical expectations of depleted heterozygosity and relaxed selection in the social inbreeding species. Relaxed selection could not be detected in the S. mimosarum lineage, suggesting that there has been a recent transition to sociality in this species.

Details

Language :
English
ISSN :
14712164
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.916f16250bfc4eca817cfe58d8253b6f
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2164-13-70