Back to Search Start Over

Rapid segmentation of computed tomography angiography images of the aortic valve: the efficacy and clinical value of a deep learning algorithm

Authors :
Yu Mao
Guangyu Zhu
Tingting Yang
Ruediger Lange
Timothée Noterdaeme
Chenming Ma
Jian Yang
Source :
Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

ObjectivesThe goal of this study was to explore the reliability and clinical value of fast, accurate automatic segmentation of the aortic root based on a deep learning tool compared with computed tomography angiography.MethodsA deep learning tool for automatic 3-dimensional aortic root reconstruction, the CVPILOT system (TAVIMercy Data Technology Ltd., Nanjing, China), was trained and tested using computed tomography angiography scans collected from 183 patients undergoing transcatheter aortic valve replacement from January 2021 to December 2022. The quality of the reconstructed models was assessed using validation data sets and evaluated clinically by experts.ResultsThe segmentation of the ascending aorta and the left ventricle attained Dice similarity coefficients (DSC) of 0.9806/0.9711 and 0.9603/0.9643 for the training and validation sets, respectively. The leaflets had a DSC of 0.8049/0.7931, and the calcification had a DSC of 0.8814/0.8630. After 6 months of application, the system modeling time was reduced to 19.83 s.ConclusionFor patients undergoing transcatheter aortic valve replacement, the CVPILOT system facilitates clinical workflow. The reliable evaluation quality of the platform indicates broad clinical application prospects in the future.

Details

Language :
English
ISSN :
22964185
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Bioengineering and Biotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.91f87af817d44dc19201aa0b6990d91e
Document Type :
article
Full Text :
https://doi.org/10.3389/fbioe.2024.1285166