Back to Search Start Over

Generation of an E. coli platform strain for improved sucrose utilization using adaptive laboratory evolution

Authors :
Elsayed T. Mohamed
Hemanshu Mundhada
Jenny Landberg
Isaac Cann
Roderick I. Mackie
Alex Toftgaard Nielsen
Markus J. Herrgård
Adam M. Feist
Source :
Microbial Cell Factories, Vol 18, Iss 1, Pp 1-14 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background Sucrose is an attractive industrial carbon source due to its abundance and the fact that it can be cheaply generated from sources such as sugarcane. However, only a few characterized Escherichia coli strains are able to metabolize sucrose, and those that can are typically slow growing or pathogenic strains. Methods To generate a platform strain capable of efficiently utilizing sucrose with a high growth rate, adaptive laboratory evolution (ALE) was utilized to evolve engineered E. coli K-12 MG1655 strains containing the sucrose utilizing csc genes (cscB, cscK, cscA) alongside the native sucrose consuming E. coli W. Results Evolved K-12 clones displayed an increase in growth and sucrose uptake rates of 1.72- and 1.40-fold on sugarcane juice as compared to the original engineered strains, respectively, while E. coli W clones showed a 1.4-fold increase in sucrose uptake rate without a significant increase in growth rate. Whole genome sequencing of evolved clones and populations revealed that two genetic regions were frequently mutated in the K-12 strains; the global transcription regulatory genes rpoB and rpoC, and the metabolic region related to a pyrimidine biosynthetic deficiency in K-12 attributed to pyrE expression. These two mutated regions have been characterized to confer a similar benefit when glucose is the main carbon source, and reverse engineering revealed the same causal advantages on M9 sucrose. Additionally, the most prevalent mutation found in the evolved E. coli W lineages was the inactivation of the cscR gene, the transcriptional repression of sucrose uptake genes. Conclusion The generated K-12 and W platform strains, and the specific sets of mutations that enable their phenotypes, are available as valuable tools for sucrose-based industrial bioproduction in the facile E. coli chassis.

Details

Language :
English
ISSN :
14752859
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbial Cell Factories
Publication Type :
Academic Journal
Accession number :
edsdoj.92080b068647443d8ff65a381a6ac2f0
Document Type :
article
Full Text :
https://doi.org/10.1186/s12934-019-1165-2