Back to Search Start Over

Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice

Authors :
Can ZHAO
Heng HUANG
Zi-hui QIAN
Heng-xin JIANG
Guang-ming LIU
Ke XU
Ya-jie HU
Qi-gen DAI
Zhong-yang HUO
Source :
Journal of Integrative Agriculture, Vol 20, Iss 6, Pp 1487-1502 (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency. Few studies have examined the effects of reducing the times of nitrogen (RTN) application and reducing the nitrogen rate (RNR) of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields. Therefore, a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River, China. Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen. We found that under the same nitrogen application rate, the yield of RTN3 increased by 9.64 and 10.18% in rice varieties NJ9108 and NJ5718, respectively, compared with the farmers’ fertilizer practices (FFP). The nitrogen accumulation of RTN3 was the highest at heading stage, at 11.30 t ha−1 across 2018 and 2019. Under the same nitrogen application rate, the N agronomic use efficiency (NAE), N physiological efficiency (NPE) and N recovery efficiency (NRE) of RTN3 were 8.1–21.28%, 8.51–41.76% and 0.28–14.52% higher than those of the other fertilization modes, respectively. RNR led to decreases in SPAD value, leaf area index (LAI), dry matter accumulation, nitrogen accumulation, and nitrogen use efficiency. These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen, and RNR1 could achieve the goals of saving cost and increasing resource use efficiency. Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.

Details

Language :
English
ISSN :
20953119
Volume :
20
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Journal of Integrative Agriculture
Publication Type :
Academic Journal
Accession number :
edsdoj.920830ffb5744380bb1f951d44a7219c
Document Type :
article
Full Text :
https://doi.org/10.1016/S2095-3119(20)63362-7