Back to Search Start Over

High data rate spin-wave transmitter

Authors :
Kun Xue
R. H. Victora
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Spin-wave devices have recently become a strong competitor in computing and information processing owing to their excellent energy efficiency. Researchers have explored magnons, the quanta of spin-waves, as an information carrier and significant progress has occurred in both excitation and computation. However, most transmission designs remain immature in terms of data rate and information complexity as they only utilize simple spin-wave pulses and suffer from signal distortion. In this work, using micromagnetic simulations, we demonstrate a spin-wave transmitter that operates reliably at a data rate of 4 Gbps over significant (multi-micron) distances with error rates as low as 10−14. Spin-wave amplitude is used to encode information. Carrier frequency and data rate are carefully chosen to restrict dispersion spreading, which is the main reason for signal distortion. We show that this device can be integrated into either pure-magnonic circuits or modern electronic networks. Our study reveals the potential for achieving an even higher data rate of 10 Gbps and also offers a comprehensive and logical methodology for performance tuning.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.92eacfe53552426aa0b63b400281e6bf
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-73957-w