Back to Search Start Over

Surface network extraction from high resolution digital terrain models

Authors :
Eric Guilbert
Source :
Journal of Spatial Information Science, Vol 2021, Iss 22, Pp 33-59 (2021)
Publication Year :
2021
Publisher :
University of Maine, 2021.

Abstract

A surface network is a topological data structure formed by a set of thalwegs and ridges on a digital terrain model. Its computation relies on the detection of saddles on the terrain. Hence, computation methods must guarantee enough saddles are detected but also that no improper conflicts between ridges and thalwegs are created, leading to an inconsistent network. This paper presents a new approach that maximizes the number of saddles and ensures this topological consistency for high-resolution terrain models represented by a raster grid. The grid is triangulated in order to preserve saddles and to facilitate thalweg and ridge computation. It does not require any user parameter and lines remain aligned with triangulation edges, avoiding numerical errors. The method also includes a coherent partitioning of the terrain into hills and dales. A case study shows that the surface network computation can be achieved in reasonable time and hence can be applied to the analysis of large terrain models.

Details

Language :
English
ISSN :
1948660X
Volume :
2021
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Journal of Spatial Information Science
Publication Type :
Academic Journal
Accession number :
edsdoj.92f9ac1ab29d428d8efa9381916d6ccb
Document Type :
article
Full Text :
https://doi.org/10.5311/JOSIS.2021.22.681