Back to Search Start Over

The Effect of Silane Treatment of a Resin-Based Composite on Its Microtensile Bond Strength to a Ceramic Restorative Material

Authors :
Akiko Haruyama
Takashi Muramatsu
Atsushi Kameyama
Source :
Applied Sciences, Vol 14, Iss 20, p 9178 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The purpose of this study was to investigate the effect of silane treatment of a resin-coated resin-based composite (RBC) base material on its microtensile bond strength (μTBS) to a computer aided-design/computer-aided manufacturing (CAD/CAM) ceramic restorative material. RBC blocks (4 mm × 7 mm × 10 mm) were prepared, and the adherend surfaces were prepared as follows: no resin coating + no silane treatment (Group I), no resin coating + silane treatment (Group II), resin coating only (Group III), and resin coating + silane treatment (Group IV). The resin coating was applied with Clearfil SE Bond and flowable RBC to the adherend surface. Each treated sample was bonded to a ceramic block using Panavia V5. After storage in 37 °C water for 1 week, microspecimens were fabricated, and the μTBS was tested. The failure mode of each specimen was determined using stereomicroscopy and scanning electron microscopy. The µTBS of Group II (20.2 ± 4.0 MPa) was not significantly different from that of Group I (17.6 ± 5.9 MPa) (p > 0.05), and the µTBS of Group I was significantly smaller than that of Group III (21.3 ± 7.2 MPa) (p < 0.05). The µTBS of Group IV (24.9 ± 3.8 MPa) was significantly greater than that of Group III (p < 0.05). Our findings indicate that silane treatment of the resin-coated surface can enhance the µTBS. Silane treatment of RBC base material was not effective when prepared without resin coating.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.930739f580d4608987ab23e288ab74f
Document Type :
article
Full Text :
https://doi.org/10.3390/app14209178