Back to Search Start Over

Pharmacogenetic analysis of structural variation in the 1000 genomes project using whole genome sequences

Authors :
Carissa A. Sherman
Katrina G. Claw
Seung-been Lee
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract While significant strides have been made in understanding pharmacogenetics (PGx) and gene-drug interactions, there remains limited characterization of population-level PGx variation. This study aims to comprehensively profile global star alleles (haplotype patterns) and phenotype frequencies in 58 pharmacogenes associated with drug absorption, distribution, metabolism, and excretion. PyPGx, a star-allele calling tool, was employed to identify star alleles within high-coverage whole genome sequencing (WGS) data from the 1000 Genomes Project (N = 2504; 26 global populations). This process involved detecting structural variants (SVs), such as gene deletions, duplications, hybrids, as well as single nucleotide variants and insertion-deletion variants. The majority of our PyPGx calls for star alleles and phenotype frequencies aligned with the Pharmacogenomics Knowledge Base, although notable population-specific frequencies differed at least twofold. Validation efforts confirmed known SVs while uncovering several novel SVs currently undefined as star alleles. Additionally, we identified 210 small nucleotide variants associated with severe functional consequences that are not defined as star alleles. The study serves as a valuable resource, providing updated population-level star allele and phenotype frequencies while incorporating SVs. It also highlights the burgeoning potential of cost-effective WGS for PGx genotyping, offering invaluable insights to improve tailored drug therapies across diverse populations.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.938603cc439748ee83b968d4a86379d9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-73748-3