Back to Search Start Over

Lumbar Fusion including Sacroiliac Joint Fixation Increases the Stress and Angular Motion at the Hip Joint: A Finite Element Study

Authors :
Takuhei Kozaki
Hiroshi Hashizume
Hiroyuki Oka
Satoru Ohashi
Yoh Kumano
Ei Yamamoto
Akihito Minamide
Yasutsugu Yukawa
Hiroshi Iwasaki
Shunji Tsutsui
Masanari Takami
Keiji Nakata
Takaya Taniguchi
Daisuke Fukui
Daisuke Nishiyama
Manabu Yamanaka
Hidenobu Tamai
Ryo Taiji
Shizumasa Murata
Akimasa Murata
Hiroshi Yamada
Source :
Spine Surgery and Related Research, Vol 6, Iss 6, Pp 681-688 (2022)
Publication Year :
2022
Publisher :
The Japanese Society for Spine Surgery and Related Research, 2022.

Abstract

Introduction: Adult spinal fusion surgery improves lumbar alignment and patient satisfaction. Adult spinal deformity surgery improves saggital balance not only lumbar lesion, but also at hip joint coverage. It was expected that hip joint coverage rate was improved and joint stress decreased. However, it was reported that adjacent joint disease at hip joint was induced by adult spinal fusion surgery including sacroiliac joint fixation on an X-ray study. The mechanism is still unclear. We aimed to investigate the association between lumbosacral fusion including sacroiliac joint fixation and contact stress of the hip joint. Methods: A 40-year-old woman with intact lumbar vertebrae underwent computed tomography. A three-dimensional nonlinear finite element model was constructed from the L4 vertebra to the femoral bone with triangular shell elements (thickness, 2 mm; size, 3 mm) for the cortical bone's outer surface and 2-mm (lumbar spine) or 3-mm (femoral bone) tetrahedral solid elements for the remaining bone. We constructed the following four models: a non-fusion model (NF), a L4-5 fusion model (L5F), a L4-S1 fusion model (S1F), and a L4-S2 alar iliac screw fixation model (S2F). A compressive load of 400 N was applied vertically to the L4 vertebra and a 10-Nm bending moment was additionally applied to the L4 vertebra to stimulate flexion, extension, left lateral bending, and axial rotation. Each model's hip joint's von Mises stress and angular motion were analyzed. Results: The hip joint's angular motion in NF, L5F, S1F, and S2F gradually increased; the S2F model presented the greatest angular motion. Conclusions: The average and maximum contact stress of the hip joint was the highest in the S2F model. Thus, lumbosacral fusion surgery with sacroiliac joint fixation placed added stress on the hip joint. We propose that this was a consequence of adjacent joint spinopelvic fixation. Lumbar-to-pelvic fixation increases the angular motion and stress at the hip joint.

Details

Language :
English
ISSN :
2432261X
Volume :
6
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Spine Surgery and Related Research
Publication Type :
Academic Journal
Accession number :
edsdoj.93bf7c99a32c4b509b88827bbf05c02f
Document Type :
article
Full Text :
https://doi.org/10.22603/ssrr.2021-0231