Back to Search
Start Over
A Comparison of Analytical Approaches for the Spectral Discrimination and Characterisation of Mite Infestations on Banana Plants
- Source :
- Remote Sensing, Vol 14, Iss 21, p 5467 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- This research investigates the capability of field-based spectroscopy (350–2500 nm) for discriminating banana plants (Cavendish subgroup Williams) infested with spider mites from those unaffected. Spider mites are considered a major threat to agricultural production, as they occur on over 1000 plant species, including banana plant varieties. Plants were grown under a controlled glasshouse environment to remove any influence other than the imposed treatment (presence or absence of spider mites). The spectroradiometer measurements were undertaken with a leaf clip over three infestation events. From the resultant spectral data, various classification models were evaluated including partial least squares discriminant analysis (PLSDA), K-nearest neighbour, support vector machines and back propagation neural network. Wavelengths found to have a significant response to the presence of spider mites were extracted using competitive adaptive reweighted sampling (CARS), sub-window permutation analysis (SPA) and random frog (RF) and benchmarked using the classification models. CARS and SPA provided high detection success (86% prediction accuracy), with the wavelengths found to be significant corresponding with the red edge and near-infrared portions of the spectrum. As there is limited access to operational commercial hyperspectral imaging and additional complexity, a multispectral camera (Sequoia) was assessed for detecting spider mite impacts on banana plants. Simulated multispectral bands were able to provide a high level of detection accuracy (prediction accuracy of 82%) based on a PLSDA model, with the near-infrared band being most important, followed by the red edge, green and red bands. Multispectral vegetation indices were trialled using a simple threshold-based classification method using the green normalised difference vegetation index (GNDVI), which achieved 82% accuracy. This investigation determined that remote sensing approaches can provide an accurate method of detecting mite infestations, with multispectral sensors having the potential to provide a more commercially accessible means of detecting outbreaks.
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 14
- Issue :
- 21
- Database :
- Directory of Open Access Journals
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.94147d7da1074f3fb3a4a200d829ad00
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/rs14215467