Back to Search
Start Over
Efficient photocatalytic bactericidal performance of green-synthesised TiO2/reduced graphene oxide using banana peel extracts
- Source :
- Heliyon, Vol 10, Iss 4, Pp e26636- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- In this study, the fabrication of titanium dioxide/reduced graphene oxide (TiO2/rGO) utilising banana peel extracts (Musa paradisiaca L.) as a reducing agent for the photoinactivation of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was explored. The GO synthesis was conducted using a modified Tour method, whereas the production of rGO involved banana peel extracts through a reflux method. The integration of TiO2 into rGO was achieved via a hydrothermal process. The successful synthesis of TiO2/rGO was verified through various analytical techniques, including X-ray diffraction (XRD), gas sorption analysis (GSA), Fourier-transform infrared (FT-IR) spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), scanning electron microscope-energy dispersive X-ray (SEM-EDX) and transmission electron microscopy (TEM) analyses. The results indicated that the hydrothermal-assisted green synthesis effectively produced TiO2/rGO with a particle size of 60.5 nm. Compared with pure TiO2, TiO2/rGO demonstrated a reduced crystallite size (88.505 nm) and an enhanced surface area (22.664 m2/g). Moreover, TiO2/rGO featured a low direct bandgap energy (3.052 eV), leading to elevated electrical conductivity and superior photoconductivity. To evaluate the biological efficacy of TiO2/rGO, photoinactivation experiments targeting E. coli and S. aureus were conducted using the disc method. Sunlight irradiation emerged as the most effective catalyst, achieving optimal inactivation results within 6 and 4 h.
Details
- Language :
- English
- ISSN :
- 24058440
- Volume :
- 10
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Heliyon
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.944fc85706c4dd196a75e9ef8b952ad
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.heliyon.2024.e26636