Back to Search
Start Over
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
- Source :
- Geoscientific Model Development, Vol 16, Pp 1997-2009 (2023)
- Publication Year :
- 2023
- Publisher :
- Copernicus Publications, 2023.
-
Abstract
- Lagrangian particle dispersion models (LPDMs) have been used extensively to calculate source-receptor relationships (“footprints”) for use in applications such as greenhouse gas (GHG) flux inversions. Because a single model simulation is required for each data point, LPDMs do not scale well to applications with large data sets such as flux inversions using satellite observations. Here, we develop a proof-of-concept machine learning emulator for LPDM footprints over a ∼ 350 km × 230 km region around an observation point, and test it for a range of in situ measurement sites from around the world. As opposed to previous approaches to footprint approximation, it does not require the interpolation or smoothing of footprints produced by the LPDM. Instead, the footprint is emulated entirely from meteorological inputs. This is achieved by independently emulating the footprint magnitude at each grid cell in the domain using gradient-boosted regression trees with a selection of meteorological variables as inputs. The emulator is trained based on footprints from the UK Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) for 2014 and 2015, and the emulated footprints are evaluated against hourly NAME output from 2016 and 2020. When compared to CH4 concentration time series generated by NAME, we show that our emulator achieves a mean R-squared score of 0.69 across all sites investigated between 2016 and 2020. The emulator can predict a footprint in around 10 ms, compared to around 10 min for the 3D simulator. This simple and interpretable proof-of-concept emulator demonstrates the potential of machine learning for LPDM emulation.
Details
- Language :
- English
- ISSN :
- 1991959X and 19919603
- Volume :
- 16
- Database :
- Directory of Open Access Journals
- Journal :
- Geoscientific Model Development
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9465d8c86a2e405c9fb5e59fcfd48a0f
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/gmd-16-1997-2023