Back to Search Start Over

Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations

Authors :
Bomidi Lakshmi Madhavan
Rei Kudo
Madineni Venkat Ratnam
Corinna Kloss
Gwenaël Berthet
Pasquale Sellitto
Source :
Remote Sensing, Vol 15, Iss 1, p 29 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

In recent years (2017–2019), several moderate volcanic eruptions and wildfires have perturbed the stratospheric composition and concentration with distinct implications on radiative forcing and climate. The Stratospheric Aerosol and Gas Experiment III instruments onboard the International Space Station (SAGE III/ISS) have been providing aerosol extinction coefficient (EC) profiles at multiple wavelengths since June 2017. In this study, a method to invert the spectral stratospheric aerosol optical depth (sAOD) or EC values from SAGE III/ISS (to retrieve the number/volume size distributions and other microphysical properties) is presented, and the sensitivity of these retrievals is evaluated. It was found that the retrievals are strongly dependent on the choices of wavelengths, which in turn determine the shapes of the calculated curves. Further, we examine the changes in stratospheric aerosol spectral behavior, size distribution properties, time evolution (growth/decay) characteristics associated with subsequent moderate volcanic eruptions, namely, Ambae (15∘S, 167∘E; April and July 2018), Raikoke (48∘N, 153∘E; June 2019), and Ulawun (5∘S, 151∘E; June and August 2019), in different spatial regions. The observational period was classified with reference to Ambae eruptions into four phases (pre-Ambae, Ambae1, Ambae2, and post-Ambae). The pre-Ambae and post-Ambe periods comprise the 2017 Canadian fires and 2019 Raikoke/Ulawun eruptions, respectively. The spectral dependence of sAOD was comparable and lowest during the pre-Ambae and Ambae1 periods in all regions. The number concentration at the principal mode radius (between 0.07 and 0.2 μm) was observed to be higher during the Ambae2 period over the Northern Hemisphere (NH). The rate of change (growth/decay) in the sAOD on a global scale resembled the changes in the Southern Hemisphere (SH), unlike the time-lag-associated changes in the NH. These differences could be attributed to the prevailing horizontal and vertical dispersion mechanisms in the respective regions. Lastly, the radiative forcing estimates of Ambae and Raikoke/Ulawun eruptions, as reported in recent studies, was discussed by taking clues from other major and moderate eruptions to gain insight on their role in climate change.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.9475b3b56bbf4ce296d12bf83edc4757
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15010029