Back to Search Start Over

State Constrained Variable Structure Control for Active Heave Compensators

Authors :
Huan Yu
Ying Chen
Wenzhuo Shi
Yi Xiong
Jianhua Wei
Source :
IEEE Access, Vol 7, Pp 54770-54779 (2019)
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

Heave compensation systems are widely used to decouple the load motion from wave-induced vessel motion for the equipment handling on the ocean. Researches have been made to achieve successful compensation, yet few of them discusses the inherent constraints of the systems, such as bounded compensator's stroke and max actuator's velocity. This paper presents a solution for active heave compensation systems with such constraints by means of variable structure control. The controller's complexity on design procedures and effectiveness are compared with a trajectory planning control method which turns out that the variable structure controller is more suitable to apply to the active heave compensators. The back-stepping method is used to robustly stabilize this variable structure system and for the aim of a decrease on the high robust gain due to uncertain friction term, a modified decoupled friction observer is used which is also verified by both theoretical and experimental analyses. To compensate for the time delay of the motion reference unit (MRU), a heave prediction algorithm is used. The experimental results show that most heave motion can be compensated when the motion and its velocity are feasible, while no hit occurs otherwise.

Details

Language :
English
ISSN :
21693536
Volume :
7
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.951b2034b7ea40218356bd430ef6285b
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2019.2907674