Back to Search Start Over

A review of pollution-based real-time modelling and control for sewage systems

Authors :
Rodrigo da Silva Gesser
Holger Voos
Alex Cornelissen
Georges Schutz
Source :
Heliyon, Vol 10, Iss 11, Pp e31831- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Conventional solutions for wastewater collection focus on reducing overflow events in the sewage network, which can be achieved by adapting sewer infrastructure or, a more cost-effective alternative, by implementing a non-engineering management solution. The state-of-the-art solution is centered on Real-Time Control (RTC), which is already resulting in a positive impact on the environment by decreasing the volume of wastewater being discharged into receiving waters. Researchers have been continuing efforts towards upgrading RTC solutions for sewage systems and a new approach, although rudimentary, was introduced in 1997, known as Pollution-based RTC (P-RTC), which added water quality (concentration or load) information explicitly within the RTC algorithm. Formally, P-RTC is encompassed of several control methodologies using a measurement or estimation of the concentration (i.e. COD or ammonia) of the sewage throughout the network. The use of P-RTC can result in a better control performance with a reduction in concentration of overflowing wastewater observed associated with an increase of concentration of sewage arriving at the Wastewater Treatment Plant (WWTP). The literature revealed that P-RTC can be differentiated by: (1) implementation method; (2) how water quality is incorporated, and (3) overall control objectives. Additionally, this paper evaluates the hydrological models used for P-RTC. The objective of this paper is to compile relevant research in pollution-based modelling and real-time control of sewage systems, explaining the general concepts within each P-RTC category and their differences.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.952587881dd4a6d9e67cc7707c0a4a4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e31831