Back to Search
Start Over
Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes.
- Source :
- PLoS Biology, Vol 19, Iss 3, p e3001143 (2021)
- Publication Year :
- 2021
- Publisher :
- Public Library of Science (PLoS), 2021.
-
Abstract
- There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 15449173 and 15457885
- Volume :
- 19
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.953d8b25aa2b462bb1a23148fd6012d7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pbio.3001143