Back to Search
Start Over
Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method
- Source :
- Atmospheric Chemistry and Physics, Vol 24, Pp 4875-4894 (2024)
- Publication Year :
- 2024
- Publisher :
- Copernicus Publications, 2024.
-
Abstract
- China stands out as a major contributor to anthropogenic methane (CH4) emissions, with coal mine methane (CMM) playing a crucial role. To control and reduce CH4 emissions, China has made a dedicated commitment and formulated an ambitious mitigation plan. To verify the progress made, the consistent acquisition of independent CH4 emission data is required. This paper aims to implement a wind-assigned anomaly method for the precise determination of regional-scale CMM emissions within the coal-rich Shanxi province. We use the TROPOspheric Monitoring Instrument (TROPOMI) CH4 observations from May 2018 to May 2023, coupled with ERA5 wind and a bottom-up inventory dataset based on the IPCC (Intergovernmental Panel on Climate Change) Tier 2 approach covering the Changzhi, Jincheng, and Yangquan regions of the Shanxi province. The derived emission strengths are 8.4 × 1026 molec. s−1 (0.706 Tg yr−1, ±25 %), 1.4 × 1027 molec. s−1 (1.176 Tg yr−1, ±20 %), and 4.9 × 1026 molec. s−1 (0.412 Tg yr−1, ±21 %), respectively. Our results exhibit biases of −18 %, 8 %, and 14 %, respectively, when compared to the IPCC Tier 2 bottom-up inventory. Larger discrepancies are found when comparing the estimates to the Copernicus Atmosphere Monitoring Service global anthropogenic emissions (CAMS-GLOB-ANT) and Emissions Database for Global Atmospheric Research (EDGARv7.0) inventories (64 %–176 %), suggesting that the two inventories may be overestimating CH4 emissions from the studied coal mining regions. Our estimates provide a comprehensive characterization of the regions within the Shanxi province, contribute to the validation of emission inventories, and provide additional insights into CMM emission mitigation.
Details
- Language :
- English
- ISSN :
- 16807316 and 16807324
- Volume :
- 24
- Database :
- Directory of Open Access Journals
- Journal :
- Atmospheric Chemistry and Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.955e21bcd6d9411d885f7bafc70288af
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/acp-24-4875-2024