Back to Search Start Over

Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method

Authors :
Q. Tu
F. Hase
K. Qin
J. B. Cohen
F. Khosrawi
X. Zou
M. Schneider
F. Lu
Source :
Atmospheric Chemistry and Physics, Vol 24, Pp 4875-4894 (2024)
Publication Year :
2024
Publisher :
Copernicus Publications, 2024.

Abstract

China stands out as a major contributor to anthropogenic methane (CH4) emissions, with coal mine methane (CMM) playing a crucial role. To control and reduce CH4 emissions, China has made a dedicated commitment and formulated an ambitious mitigation plan. To verify the progress made, the consistent acquisition of independent CH4 emission data is required. This paper aims to implement a wind-assigned anomaly method for the precise determination of regional-scale CMM emissions within the coal-rich Shanxi province. We use the TROPOspheric Monitoring Instrument (TROPOMI) CH4 observations from May 2018 to May 2023, coupled with ERA5 wind and a bottom-up inventory dataset based on the IPCC (Intergovernmental Panel on Climate Change) Tier 2 approach covering the Changzhi, Jincheng, and Yangquan regions of the Shanxi province. The derived emission strengths are 8.4 × 1026 molec. s−1 (0.706 Tg yr−1, ±25 %), 1.4 × 1027 molec. s−1 (1.176 Tg yr−1, ±20 %), and 4.9 × 1026 molec. s−1 (0.412 Tg yr−1, ±21 %), respectively. Our results exhibit biases of −18 %, 8 %, and 14 %, respectively, when compared to the IPCC Tier 2 bottom-up inventory. Larger discrepancies are found when comparing the estimates to the Copernicus Atmosphere Monitoring Service global anthropogenic emissions (CAMS-GLOB-ANT) and Emissions Database for Global Atmospheric Research (EDGARv7.0) inventories (64 %–176 %), suggesting that the two inventories may be overestimating CH4 emissions from the studied coal mining regions. Our estimates provide a comprehensive characterization of the regions within the Shanxi province, contribute to the validation of emission inventories, and provide additional insights into CMM emission mitigation.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
24
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.955e21bcd6d9411d885f7bafc70288af
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-24-4875-2024