Back to Search Start Over

Polarized Anisotropic Synchrotron Emission and Absorption and Its Application to Black Hole Imaging

Authors :
Alisa Galishnikova
Alexander Philippov
Eliot Quataert
Source :
The Astrophysical Journal, Vol 957, Iss 2, p 103 (2023)
Publication Year :
2023
Publisher :
IOP Publishing, 2023.

Abstract

Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field. The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3, accentuating ( T _⊥ > T _∥ ) or counteracting ( T _⊥ < T _∥ ) the image asymmetry produced by Doppler beaming. This can change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas.

Details

Language :
English
ISSN :
15384357
Volume :
957
Issue :
2
Database :
Directory of Open Access Journals
Journal :
The Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.95610c1d119642c0b6fed7e1f33448d3
Document Type :
article
Full Text :
https://doi.org/10.3847/1538-4357/acfa77