Back to Search Start Over

An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions

Authors :
Myrthe M. van der Bruggen
Koen D. Reesink
Paul J. M. Spronck
Nicole Bitsch
Jeroen Hameleers
Remco T. A. Megens
Casper G. Schalkwijk
Tammo Delhaas
Bart Spronck
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λ z ) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (c ax = dF/dλ z ) were calculated at the in vivo value of λ z . Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.956891e68dd42f689599fab716dc97d
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-81151-5